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Abstract. Iterations of the non-classical symmetries method give rise to new nonlinear
equations, which inherit the Lie point symmetry algebra of the original equation. Invariant
solutions of these heir equations supply new solutions of the original equation. We show that
particular cases of such invariant solutions correspond to Zhdanov’s conditional Lie–Bäcklund
symmetries.

1. Introduction

The most famous and established method for finding exact solutions of differential equations
is the classical symmetries method (CSM), also called group analysis, which originated in
1881 from the pioneering work of Sophus Lie [1]. Many good books have been dedicated
to this subject and its generalizations [2–9].

The nonclassical symmetries method (NSM) was introduced in 1969 by Bluman and
Cole [10] to obtain new exact solutions of the linear heat equation, i.e. solutions not
deducible from the classical symmetries method. The NSM consists in adding the invariant
surface condition to the given equation, and then applying the CSM. The main difficulty of
this approach is that the determining equations are no longer linear. On the other hand, the
NSM may give more solutions than the CSM. The NSM has been successfully applied to
various equations [11–16]‡, for the purpose of finding new exact solutions.

Recently, Galaktionov [17] and King [18] have found exact solutions of certain evolution
equations which apparently do not seem to be derived by either the CSM or NSM. In [19],
we have shown how these solutions can be obtained by iterating the NSM. A special case of
the NSM generates a new nonlinear equation (the so-calledG-equation [20]), which inherits
the prolonged symmetry algebra of the original equation. Another special case of the NSM
is then applied to this heir-equation to generate another heir-equation, and so on. Invariant
solutions of these heir-equations are just the solutions derived in [17, 18].

In this paper, we show that invariant solutions of the heir-equations also yield Zhdanov’s
conditional Lie–B̈acklund symmetries [21].

The use of a symbolic manipulator becomes imperative, because the heir-equations can
be quite long: one more independent variable is added at each iteration. We employ our
own interactive REDUCE programs [22] to calculate both the classical and the non-classical
symmetries, and generate the heir-equations.

† E-mail address: nucci@unipg.it
‡ Just to cite some of the numerous papers on this subject.
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2. Iterating the non-classical symmetries method

Let us consider an evolution equation in two independent variables and one dependent
variable†:

ut = H(t, x, u, ux, uxx, uxxx, . . .). (1)

The invariant surface condition is given by:

V1(t, x, u)ut + V2(t, x, u)ux = G(t, x, u). (2)

Let us take the case withV1 = 0 andV2 = 1, so that (2) becomes

ux = G(t, x, u). (3)

Applying the NSM leads to an equation forG. We call this equation theG-equation [20].
Its invariant surface condition is given by

ξ1(t, x, u, G)Gt + ξ2(t, x, u, G)Gx + ξ3(t, x, u, G)Gu = η(t, x, u, G). (4)

Let us consider the caseξ1 = 0, ξ2 = 1, andξ3 = G, so that (4) becomes

Gx + GGu = η(t, x, u, G). (5)

Applying the NSM leads to an equation forη. We call this equation theη-equation. Clearly

Gx + GGu ≡ uxx ≡ η. (6)

We could keep iterating to obtain the�-equation, which corresponds to

ηx + Gηu + ηηG ≡ uxxx ≡ �(t, x, u, G, η) (7)

the ρ-equation, which corresponds to

�x + G�u + η�G + ��η ≡ uxxxx ≡ ρ(t, x, u, G, η, �) (8)

and so on. Each of these equations inherits the symmetry algebra of the original equation,
with the right prolongation: first prolongation for theG-equation, second prolongation for
the η- equation, and so on.

This iterating method yields both partial symmetries as given by Vorob’ev in [24], and
differential constraints as given by Olver [25]. Also, it should be noticed that theuxx · · ·︸ ︷︷ ︸

n

–

equation of (1) is just one of many possiblen-extended equations as defined by Guthrie in
[26].

More details can be found in [19].

3. Zhdanov’s conditional Lie–Bäcklund symmetries

In [21], Zhdanov introduced the concept of conditional Lie–Bäckund symmetry, i.e. given
an evolution-type equation (1) and some smooth Lie–Bäcklund vector field (LBVF)

Q = S∂u + (DtS)∂ut
+ (DxS)∂ux

+ · · · (9)

with

S = S(t, x, u, ut , ux, . . .)

then equation (1) is said to be conditionally invariant under LBVF (9) if the condition

Q(ut − H)|M∩Lx
= 0 (10)

† In [23] it was shown how to iterate the NSM in the case of systems.
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holds, withM a set of all differential consequences of the equation (1), andLx a set of all
x-differential consequences of the equationS = 0. Zhdanov claimed that this definition can
be applied to construct new exact solutions of (1), which cannot be obtained by either Lie
point or Lie–B̈acklund symmetries.

Instead,S = 0 is just a particular invariant solution of a suitable heir-equation generated
by iterating the NSM. Of course, we assume thatS = 0 can be written in explicit form with
respect to the highest derivative ofu.

As example 1, Zhdanov considered the following nonlinear heat conductivity equation
with a logarithmic-type nonlinearity

ut = uxx + (α + β log(u) − γ 2 log(u)2)u (11)

and obtained new solutions by showing that (11) is conditionally invariant with respect to
LBVF (9) with

S = uxx − γ ux − u2
x/u. (12)

It can be easily shown that equation

S ≡ uxx − γ ux − u2
x/u = 0 (13)

admits an eight-dimensional Lie point symmetry algebra and therefore is linearizable†. In
fact, the change of dependent variableu = exp(v) transforms (13) intovxx − γ vx = 0,
which can be easily integrated. Therefore, the following general solution of (13) can be
obtained [21],

u(t, x) = exp(φ1(t) + φ2(t) exp(γ x))

which substituted into (11) gives rise to the following system of two ordinary differential
equations,

φ̇1 = α + βφ1 − γ 2φ2
1 φ̇2 = (β + γ 2 − 2γ 2φ1)φ2

and its general solution can easily be derived [21].
Now, let us apply the iterations of the NSM to equation (11). ItsG-equation is

2GxuG + GuuG
2 + Gu log(u)2γ 2u − Gu log(u)βu − Guαu − Gt

+Gxx − log(u)2Gγ 2 + log(u)βG − 2 log(u)Gγ 2 + αG + βG = 0. (14)

Its η-equation is

2ηuGηGu + ηGGη2u + ηG log(u)2γ 2Gu − ηG log(u)βGu + 2ηG log(u)γ 2Gu

−ηGαGu − ηGβGu + ηuuG
2u + ηu log(u)2γ 2u2 − ηu log(u)βu2

−ηuαu2 − log(u)2γ 2ηu + log(u)βηu − 2 log(u)γ 2ηu − 2 log(u)γ 2G2

+αηu + βηu + βG2 − 2γ 2G2 = 0. (15)

The Lie point symmetry algebra of (11) is spanned by the two vector fieldsX1 = ∂t , and
X2 = ∂x . Therefore,(x, t)-independent invariant solutions of (15) are given in the form
η = η(u, G). A particular case isη = r1(u)G2 + r2(u)G + r3(u), i.e. a polynomial of
second degree inG. Substituting into (15) and assumingr3 = 0 gives rise to

η = G2

u
± γG. (16)

Finally, substitutingη = uxx , andG = ux into (16) yields (13).

† Zhdanov integrated equation (13) without any mention of this property.
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As example 2, Zhdanov considered the following nonlinear heat conductivity equation,

ut = uxx + F(u) (17)

and established that it is conditionally invariant with respect to LBVF (9) with

S = uxx − A(u)u2
x (18)

if F(u) andA(u) satisfy the following system:

A′′ + 4AA′ + 2A3 = 0 (19)

F ′′ − A′F − AF ′ = 0. (20)

Let us apply the iterations of the NSM to equation (17). ItsG-equation is

F ′(u)G + 2GxuG + GuuG
2 − FGu − Gt + Gxx = 0. (21)

Its η-equation is

F ′′G2 − F ′GηG + F ′η + 2ηηxG + 2GηηuG + η2ηGG − ηt + 2Gηxu + ηxx

+G2ηuu − Fηu = 0. (22)

The Lie point symmetry algebra of (17) (withF an arbitrary function ofu) is spanned by the
two vector fieldsX1 = ∂t , andX2 = ∂x . Therefore,(x, t)-independent invariant solutions of
(22) are given in the formη = η(u, G). A particular case isη = A(u)G2 +B(u)G+C(u),
i.e. a polynomial of second degree inG. Substituting into (22) yields

A′′ + 4AA′ + 2A3 = 0 (23)

4A′C − A′F + 2B ′B + C ′′ + F ′′ − F ′A + 4A2C + 2AB2 = 0 (24)

2B ′C − B ′F + 4ABC = 0 (25)

−C ′F + F ′C + 2AC2 = 0. (26)

If we assumeB = C = 0, thenη = A(u)G2 and system (23)–(26) reduces to system (19)
and (20).

As example 3, Zhdanov considered the following nonlinear equation

ut = uxx + a log(u)2u (a ∈ R1) (27)

and established that it is conditionally invariant with respect to LBVF (9) with

S = u2uxxx − 3uuxuxx + 2u3
x + auxu

2. (28)

Let us apply the iterations of the NSM to equation (27). ItsG-equation is

2GGxu + G2Guu − Gu log(u)2au − Gt + Gxx + log(u)2aG + 2 log(u)aG = 0. (29)

Its η-equation is

2ηxGηu + 2ηuGηGu + ηGGη2u − ηG log(u)2aGu − 2ηG log(u)aGu − ηtu + 2ηxuGu

+ηxxu + ηuuG
2u − ηu log(u)2au2 + log(u)2aηu + 2 log(u)aηu

+2 log(u)aG2 + 2aG2 = 0. (30)

Its �-equation is

2�xη�u2 + 2�uη�u2G + 2�ηG�ηu2 + �ηη�
2u2 − �η log(u)2aηu2 − 2�η log(u)aηu2

−2�η log(u)auG2 − 2�ηauG2 − �tu
2 + 2�xuu

2G + 2�xGηu2 + �xxu
2

+2�uGηu2G + �uuu
2G2 − �u log(u)2au3 + �GGη2u2 − �G log(u)2au2G

−2�G log(u)au2G + log(u)2a�u2 + 2 log(u)a�u2 + 6 log(u)aηuG

−2 log(u)aG3 + 6aηuG = 0. (31)



Iterating NSM and conditional Lie–B¨acklund symmetries 8121

The Lie point symmetry algebra of (27) is spanned by the two vector fieldsX1 = ∂t , and
X2 = ∂x . Therefore,(x, t)-independent invariant solutions of (31) are given in the form
� = �(u, G, η). A particular case is� = R1(u, G)η + R2(u, G), i.e. a polynomial of first
degree inη. Substituting into (31) yields

� = (3uGη − 2G3 − au2G)/u2. (32)

Finally, substituting� = uxxx , η = uxx , andG = ux into (32) yields (28).
As example 4, Zhdanov considered all PDEs of the form

ut = uxx + R(u, ux) (33)

and established that they are conditionally invariant with respect to LBVF (9) with

S = uxx − au (a ∈ R1) (34)

if R satisfies the following equation†,

a2u2Ruxux
+ 2auuxRuux

+ u2
xRuu + auRu + auxRux

− aR = 0 (35)

i.e.

R = f1(u
2
x − au2)ux + f2(u

2
x − au2)u. (36)

Let us apply the iterations of the NSM to PDEs (33). TheirG-equation is (G ≡ ux)

RGGuG + RGGx + RuG + 2GGxu + G2Guu − RGu − Gt + Gxx = 0. (37)

Their η-equation is

2RuGηG + RGGη2 + RGηx + RGηuG + RuuG
2 − RuηGG + Ruη + 2ηxGη

+2ηuGηG + ηGGη2 − ηt + 2ηxuG + ηxx + ηuuG
2 − ηuR = 0. (38)

The Lie point symmetry algebra of (33) (withR an arbitrary function ofu andux) is spanned
by the two vector fieldsX1 = ∂t , and X2 = ∂x . Therefore,(x, t)-independent invariant
solutions of (38) are given in the formη = η(u, G). A particular case isη = A(u), i.e. η

independent byG. Substituting into (38) yields

2RuGAG + RGGA2 + RGA′G + RuuG
2 + RuA + A′′G2 − A′R = 0. (39)

If we assumeA = au, then equation (39) reduces to equation (35).
Thus, we have shown that the conditional Lie–Bäcklund symmetries obtained by

Zhdanov can be derived by means of very particular invariant solutions of the heir-equations.
We have also shown that more conditional Lie–Bäcklund symmetries than those found by
Zhdanov can be obtained by means of other invariant solutions of the heir-equations.
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