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conditional Lie—Backlund symmetries
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Received 13 September 1996

Abstract. Iterations of the non-classical symmetries method give rise to new nonlinear
equations, which inherit the Lie point symmetry algebra of the original equation. Invariant
solutions of these heir equations supply new solutions of the original equation. We show that
particular cases of such invariant solutions correspond to Zhdanov’s conditionalddktsBd
symmetries.

1. Introduction

The most famous and established method for finding exact solutions of differential equations
is the classical symmetries method (CSM), also called group analysis, which originated in
1881 from the pioneering work of Sophus Lie [1]. Many good books have been dedicated
to this subject and its generalizations [2-9].

The nonclassical symmetries method (NSM) was introduced in 1969 by Bluman and
Cole [10] to obtain new exact solutions of the linear heat equation, i.e. solutions not
deducible from the classical symmetries method. The NSM consists in adding the invariant
surface condition to the given equation, and then applying the CSM. The main difficulty of
this approach is that the determining equations are no longer linear. On the other hand, the
NSM may give more solutions than the CSM. The NSM has been successfully applied to
various equations [11-18]for the purpose of finding new exact solutions.

Recently, Galaktionov [17] and King [18] have found exact solutions of certain evolution
equations which apparently do not seem to be derived by either the CSM or NSM. In [19],
we have shown how these solutions can be obtained by iterating the NSM. A special case of
the NSM generates a new nonlinear equation (the so-célteduation [20]), which inherits
the prolonged symmetry algebra of the original equation. Another special case of the NSM
is then applied to this heir-equation to generate another heir-equation, and so on. Invariant
solutions of these heir-equations are just the solutions derived in [17, 18].

In this paper, we show that invariant solutions of the heir-equations also yield Zhdanov’s
conditional Lie—Eacklund symmetries [21].

The use of a symbolic manipulator becomes imperative, because the heir-equations can
be quite long: one more independent variable is added at each iteration. We employ our
own interactive REDUCE programs [22] to calculate both the classical and the non-classical
symmetries, and generate the heir-equations.

1 E-mail address: nucci@unipg.it
i Just to cite some of the numerous papers on this subject.
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2. lterating the non-classical symmetries method

Let us consider an evolution equation in two independent variables and one dependent
variable:
ut:H(tvx»u’ux’uxmuxxxv---)' (1)

The invariant surface condition is given by:

Va(t, x, wu, + Vo(t, x, u)u, = G(t, x, u). (2
Let us take the case with; = 0 andV, = 1, so that (2) becomes
u, = G(t, x,u). 3

Applying the NSM leads to an equation far. We call this equation thé&-equation [20].
Its invariant surface condition is given by

&, x,u,G)G; + &, x,u, G)G, + &(t, x,u, G)G, = n(t,x,u,G). (4)

Let us consider the cagge = 0, & = 1, and&; = G, so that (4) becomes

G,+ GG, =n(t, x,u,G). (5)
Applying the NSM leads to an equation fgr We call this equation thg-equation. Clearly

G, +GG, =uy =1. (6)
We could keep iterating to obtain ttf@-equation, which corresponds to

Ny + Gy + 16 = e = Qt, x,u, G, 1) )
the p-equation, which corresponds to

Q + GQu + 1R + QL = Urrx = p(t, x,u, G, 1, Q) €

and so on. Each of these equations inherits the symmetry algebra of the original equation,
with the right prolongation: first prolongation for th&-equation, second prolongation for
the n- equation, and so on.

This iterating method yields both partial symmetries as given by Vorob’ev in [24], and
differential constraints as given by Olver [25]. Also, it should be noticed thak{he. .—

equation of (1) is just one of many possilleextended equations as defined by Guthrie in
[26].
More details can be found in [19].

3. Zhdanov’s conditional Lie—Backlund symmetries
In [21], Zhdanov introduced the concept of conditional Li&eBund symmetry, i.e. given
an evolution-type equation (1) and some smooth Liclund vector field (LBVF)
Q =80, + (D:S)0,, + (D80, + - -- 9)
with
S=8,x,u,us,uy,...)
then equation (1) is said to be conditionally invariant under LBVF (9) if the condition
O@w; — H)|unr, =0 (10)

1 In [23] it was shown how to iterate the NSM in the case of systems.
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holds, withM a set of all differential consequences of the equation (1),/and set of all
x-differential consequences of the equatfe- 0. Zhdanov claimed that this definition can

be applied to construct new exact solutions of (1), which cannot be obtained by either Lie
point or Lie—Backlund symmetries.

Instead,S = 0 is just a particular invariant solution of a suitable heir-equation generated
by iterating the NSM. Of course, we assume thiat O can be written in explicit form with
respect to the highest derivative of

As example 1Zhdanov considered the following nonlinear heat conductivity equation
with a logarithmic-type nonlinearity

Uy = Uy + (@ + Blog() — y?logu)®)u (11)

and obtained new solutions by showing that (11) is conditionally invariant with respect to
LBVF (9) with

S:uxx—yux—u)zc/u. (12)
It can be easily shown that equation
Szum—yux—u)zc/uzo (13)

admits an eight-dimensional Lie point symmetry algebra and therefore is lineatizale
fact, the change of dependent variable= exp(v) transforms (13) intow,, — yv, = 0,
which can be easily integrated. Therefore, the following general solution of (13) can be
obtained [21],

u(t, x) = exp(ga(r) + ¢2(r) exply x))
which substituted into (11) gives rise to the following system of two ordinary differential
equations,

$r=a+pp1— 97 2= (B+v: -2
and its general solution can easily be derived [21].

Now, let us apply the iterations of the NSM to equation (11).dtgquation is

2G .G + G,,G? + G, log(u)?y?u — G, log(u)Bu — G,au — G,

+G., —log(u)?Gy? +log(u)BG — 2logu)Gy? +aG + G =0.  (14)
Its n-equation is
2n,6nGu + 166n°u + 16 109(w)*y*Gu — ng 10g(u) BGu + 216 10g(u)y *Gu

—16aGu — nGBGu + 1, Gu + 1, 109()y *u® — n, log(u) pu’

—nuau® — log(u)?y*nu + log(u) Bnu — 2log(u)y*nu — 21og(u)y>G?

+anu + Bnu + BG% — 2y%G? = 0. (15)
The Lie point symmetry algebra of (11) is spanned by the two vector figlds: 9,, and
X, = 9,. Therefore,(x, t)-independent invariant solutions of (15) are given in the form
n = n(u,G). A particular case i8) = r1(u)G? + ro(u)G + r3(u), i.e. a polynomial of
second degree ir. Substituting into (15) and assuming= 0 gives rise to

G2
n=—=xyG. (16)
u

Finally, substitutingy = u,,, andG = u, into (16) yields (13).

1 Zhdanov integrated equation (13) without any mention of this property.
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As example 2Zhdanov considered the following nonlinear heat conductivity equation,

U =ty + F(u) (17)
and established that it is conditionally invariant with respect to LBVF (9) with

S =, — A(w)u? (18)
if F(u) and A(u) satisfy the following system:

A" +4AA +2A°=0 (19)

F'—A'F — AF =0. (20)
Let us apply the iterations of the NSM to equation (17).Gtequation is

F' W)G 4 2G,G + GuG?> — FG, — G, + G, = 0. (21)

Its n-equation is
F'G® — F'Gng + F'n+ 20 + 2Gniuc + n°nge — 0 + 260 + Nxx

+G277uu - Fnu = 0 (22)
The Lie point symmetry algebra of (17) (with an arbitrary function ofi) is spanned by the
two vector fieldsX; = 9,, andX, = d,. Therefore(x, ¢)-independent invariant solutions of
(22) are given in the formy = n(u, G). A particular case i$ = A(u)G?+ B(u)G + C(u),
i.e. a polynomial of second degree ¢h Substituting into (22) yields

A" +4AA +2A% =0 (23)
AA'C — A'F +2B'B+C" +F' — F'A+4A%C +2AB*>=0 (24)
2B'C — B'F +4ABC =0 (25)
—C'F+ F'C+2AC?=0. (26)

If we assumeB = C = 0, thenn = A(u)G? and system (23)—(26) reduces to system (19)

and (20).

As example 3Zhdanov considered the following nonlinear equation

U = uyy + alog(u)®u (a € RY) (27)

and established that it is conditionally invariant with respect to LBVF (9) with
S = uuyry — Sunityy, + 2u§’ + au,u®. (28)

Let us apply the iterations of the NSM to equation (27). Gteequation is

2GGy + G*Gyy — G, log(u)’au — G, + G + log(u)?aG + 2logu)aG = 0. (29)

Its n-equation is

2ncenu + 2nuGnGu + ngen®u — ng logu)?aGu — 256 log(u)aGu — n,u + 21, Gu
F0extt + 00 G2 — n, 10g(w)2au? + log(u)?anu + 2 log(u)anu
+2log(u)aG? + 2aG? = 0. (30)

Its Q-equation is

2Q,,Qu? + 29, QG + 29,6 Qnu + Q,,Q%u? — Q, log(u)2anu® — 2, log(u)anu?
—2Q, log(u)auG? — 2Q,auG? — Qu? + 2Q,,uG + 2Q,cnu® + Q. u?
+2Q,6n1u%G + Quu?G? — Q, log(u)?au® + Qeen’u? — Qg log(u)?au?G
—29Q log(u)au?G + log(u)?aQu® + 2 log(u)aQu? + 6 log(u)anuG
—2log(u)aG? + 6anuG = 0. (31)
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The Lie point symmetry algebra of (27) is spanned by the two vector figlds: 9,, and

X, = 9,. Therefore,(x, t)-independent invariant solutions of (31) are given in the form
Q= Q(u, G,n). A particular case i£2 = R1(u, G)n+ Ru(u, G), i.e. a polynomial of first
degree iny. Substituting into (31) yields

Q = BuGn — 2G® — au®G) /u?. (32)

Finally, substituting® = u.,, n = u,,, andG = u, into (32) yields (28).
As example 4 Zhdanov considered all PDEs of the form

Uy = Uyy + R(u, uy) (33)
and established that they are conditionally invariant with respect to LBVF (9) with

S=u,, —au (a € Rl) (34)
if R satisfies the following equation

azquw,X + 2auu, Ry, + u)chm, +auR,+au,R,, —aR =0 (35)

R = fl(uf — audu, + fz(u)zc — au®)u. (36)
Let us apply the iterations of the NSM to PDEs (33). Th&hequation is G = u,)

RGG.G + RGG, + R,G +2GG,, + G*Gyy — RG, — G, + G, = 0. (37)
Their n-equation is

2RuGr/G + RGGn2 + RG”,\: + RGnuG + RuuG2 - Rur/GG + Run + anGr/

+2nanG + nGan — Mt + 277.qu + Nxx + 77uuG2 - nuR =0. (38)
The Lie point symmetry algebra of (33) (withan arbitrary function of: andu, ) is spanned
by the two vector fieldsX; = 9,, and X, = 9,. Therefore,(x, #)-independent invariant

solutions of (38) are given in the form= n(u, G). A particular case i3 = A(u), i.e. n
independent byG. Substituting into (38) yields

2R.GAG + RGGA%? + RGA'G + RuG? + R,LA+ A'G?— AR =0. (39)

If we assumed = au, then equation (39) reduces to equation (35).

Thus, we have shown that the conditional LigeRlund symmetries obtained by
Zhdanov can be derived by means of very particular invariant solutions of the heir-equations.
We have also shown that more conditional Lié&eRlund symmetries than those found by
Zhdanov can be obtained by means of other invariant solutions of the heir-equations.
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1 In [21] there is a misprint which does not affect the given general solution.
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